

AutoMedPrint

AUTOMATED DESIGN AND RAPID MANUFACTURING OF INDIVIDUALIZED MECHANICAL AND BIOMECHATRONIC PROSTHETIC AND ORTHOTIC DEVICES

TEAM AT POZNAN UNIVERSITY OF TECHNOLOGY

FILIP GÓRSKI PhD, DSc, BEng, Assoc. Prof.

UNIVERSITY: Poznań University of Technology

EDUCATION: Mechanical Engineering (Master's & Doctoral studies and habilitation) OCCUPATION: Professor at Poznań University of Technology

ROLE: Head of Division of Additive Manufacturing and Virtual Reality Vice-dean for science of the Faculty of Mechanical Engineering

INTEREST: 3D Printing in in Medicine / VR & AR for Medicine / CAD design automation in medicine / reverse engineering

MORE INFO: filip.gorski.employee.put.poznan.pl

Faculty of Mechanical Engineering

Institute of Materials Technology PUT Cluster of Excellence in Biomedical Engineering

PRODUCTION OF CUSTOMIZED MEDICAL DEVICES

Transition from a traditional process of manufacturing medical devices

FOR WHOM ARE WE DOING IT?

Biologically disabled people constitute over <u>10% of the population</u> (e.g. in Poland)

The total number of disabled people is decreasing (2002 vs. 2011) BUT the number of biologically disabled people is increasing!

> Causes: aging society, civilization diseases, accidents

NEW IS COMING!

- the modern digital process and 3D printing is replacing the traditional molding of prostheses and orthoses for people with physical disabilities
- 3D printing = completely new technical possibilities + potentially low cost
- o problem -> an engineer is needed to design products!

AUTOMEDPRINT SYSTEM

AUTOMEDPRINT: Automation of design and rapid manufacturing of individualized orthopedic and prosthetic supplies based on data from anthropometric measurements

AUTOMEDPRINT – EXAMPLE OF AUTOMATED DESIGN SYSTEM

ORTHOPEDICAL PRODUCTS IN THE AUTOMEDPRINT SYSTEM

3D SCANNING

3D scanning + automated data processing

Virtual laboratory available at https://my.matterport.com/show/?m=NXHcatKcdW7

3D SCANNING – DATA PROCESSING

2. Transformation, initial cleaning

2 th	
x1_12	32,541
x1_13	41,769
x1_14	34,588
x1_15	0
×1_16	29,888
x1_17	39,448
×1_18	29,263
y1_11	53,474
y1_12	32,541
y1_13	(
y1_14	34,588
y1_15	48,3
y1_16	29,888
y1_17	0
18	20,20

3. Reconstruction

4. Data extraction

DESIGN

automated design, verification, product customization (AR/VR)

DESIGN

use of modular model – automated data extraction from scans

VIRTUAL FITTING

- visualization of product model in virtual environment
- immersive tests, collision detection, dimensions checking
- o design decisions

MANUFACTURING

- low-cost and simple FDM technology printable at home, school, hospital etc.
- ecological and biocompatible materials: PLA, nylon or thermoplastic polyurethane
- the ability to control the weight of the prosthesis and "slimming down"
- complete prosthesis for a child printed in less than 24 hours

MANUFACTURING

process preparation, realization, post processing

Virtual laboratory available at https://my.matterport.com/show/?m=NXHcatKcdW7

TRY-ON AND USAGE

Try-on with patient (physiotherpist + possibly orthopedist), feedback, modification

RESULTS - PROSTHESES

ZUZIA

ADAM

KUBA

LEON

JONASZ

RESULTS - ORTHOSES

MAJA

MIŁOSZ

JANEK

WHAT WE LEARNED?

- o scanning: gather as much data as possible
- \circ design: carefully analyse data for similarities and differences, improves efficiency of design process
- \circ $\,$ listen to your patients and improve your solutions
- learn along with your patients and adapt
- o use 3D printing capabilities to create many variants for user to choose from
- perform virtual fit before you invite the patient

one small 3D printed piece of plastic can improve someone's life

CONCLUSIONS

- potential of 3D printing in prosthetics is probably not used very efficiently – yet!
- needs of adult patients are different than children patients
- functional, specialized prosthesis can be 3D printed for a fraction of a cost of a traditional, expensive one – and they are useful!
- design changes can be introduced anytime, as many times as feedback is gathered from patients, also by virtual try-on

- quality management system (QMS) and product lifecycle management (PLM) introduction
- o medical regulations (EU's MDR and others) compliance
- gaining interest of big companies and enforcing the change: from long & expensive to short & cheap automated production
- \circ improving automation with use of AI
- convincing patients that their life can improve!

AWARDS AND MEDIA COVERAGE

newspapers, nation-wide TV

national/government level awards

THANK YOU FOR ATTENTION!

Contact: <u>filip.gorski@put.poznan.pl</u> <u>automedprint.put.poznan.pl</u>

