

LODZ UNIVERSITY OF TECHNOLOGY EDUCATION, RESEARCH, INNOVATION

Low temeprature sulfur vulcanization of diene rubbers

Jakub Wręczycki¹, Dariusz M. Bieliński¹, Grzegorz Mlostoń²

¹Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology,

16 Stefanowskiego Street, 90-537 Lodz, Poland

²Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz,

12 Tamka Street, 91-403 Lodz, Poland

Contact : jakub.wreczycki@p.lodz.pl, dariusz.bielinski@p.lodz.pl, grzegorz.mloston@chemia.uni.lodz.pl

Motivation & background

Most of the current production standards of rubber goods utilizing sulfurcuring systems are calibrated at **high temperatures** (at least 160 °C), to reduce the curing time and enhance productivity.

Such an approach is, however, **energy-intensive** and may strongly be affected by energy price fluctuations (dependent on **coal** and **oil** commodity prices).

Notice: ETRMA - Rubber Sector Open letter to European Energy Ministers and European Commissioners on the effects on high energy cost*. (Brussels, 30 September 2022)

*https://www.etrma.org/news/the-european-rubber-industry-is-dramatically-affected-by-the-high-energy-prices/ https://www.microsoft.com/pl-pl/microsoft-copilot (AI generator for drawings)

Elemental sulfur and features of S-atoms

Electron configuration of sulfur:

Resonance of the cycloocta-S molecule:

- Energy-favored coronal shape
- $_{\odot}$ Each $\boldsymbol{\textit{S}}$ atom is equimolar and surrounded by a decet $e^{\text{-}}$
- This is made possible by e^{-} delocalization and the presence of empty *d* orbitals
- Strong S-S homomolecular bond (265 kJ/mol)

Average bond enthalpies

 $\begin{array}{lll} {\sf C} - {\sf S} - {\sf C} & 285 \ \text{kJ/mol} \\ {\sf C} - {\sf S} - {\sf S} - {\sf C} & 265 \ \text{kJ/mol} \\ {\sf C} - {\sf S}_{{\sf x}} - {\sf C} & <265 \ \text{kJ/mol} \end{array}$

Pauling electronegativity:

Carbon	2.55
Sulfur	2.58

Pryor, W.A. Mechanisms of Sulfur Reactions, McGraw-Hill Series in Advanced Chemistry, McGraw-Hill Book Company, Inc, **1962**. Oae, S. Organic Chemistry of Sulfur, 1st ed.; Plenum Press: New York, NY, USA, **1977**. https://stock.adobe.com/images/sulfur-element-of-mendeleev-periodic-table-magnified-with-magnifying-glass/102967198 (free trial access)

Elemental sulfur and features of S-atoms

Activation of S_8 ring – possible pathways of S-S bond cleavage

Pryor, W.A. Mechanisms of Sulfur Reactions, McGraw-Hill Series in Advanced Chemistry, McGraw-Hill Book Company, Inc, **1962**. Oae, S. Organic Chemistry of Sulfur, 1st ed.; Plenum Press: New York, NY, USA, **1977**. Parker, A. J.; Kharasch, N. The Scission of Sulfur-Sulfur Bond. *Chemical Reviews* **1959**, 59, 583-628.

Our approach to low-temperature sulfur vulcanization

NATIONAL SCIENCE CENTRE

Grant: "MINIATURA 7" (No. 2023/07/X/ST5/00492).

https://ncn.gov.pl/o-ncn/multimedia/logotyp-ncn https://www.ncn.gov.pl/ogloszenia/konkursy/miniatura7

MINIATURA 7

Our approach to low-temperature sulfur vulcanization

Blazejewski, J. C.; Diter, P.; Warchol, T.; Wakselman, C. *Tetrahedron Letters* **2001**, 42, 859-861. Petrov, V.A.; Marshall, W. *Journal of Fluorine Chemistry* **2010**, 131, 1144–1155. See, Y.Y.; Morales-Colón, M.T.; Bland, D.C.; Sanford, M.S. *Accounts of Chemical Research* **2020**, 53, 2372–2383. https://www.microsoft.com/pl-pl/microsoft-copilot (AI generator for drawings)

Results – Section 1: Optimization of the additives and curing parameters,

The influence of the *fluoride salt type* and its *physical form* on curing parameters of NBR rubber

Rubber formulations	<mark>F1</mark> (25%)	F2 (25%)	F3 (25%)
Compound		[phr]	
Acrylonitrile-butadiene rubber (NBR)		100	
Zinc oxide (ZnO)		3	
Stearic acid (ST)		1	
N-cyclohexyl-2-benzothiazole sulfenamide (CBS)		1	
Elemental sulfur (S ₈)		2	
F1: TBAF 1.0M in THF (solution)	0.51	-	-
F2: TBAF · 3H ₂ O (solid)	-	0.61	- •
F3: CsF (solid)	_	-	0.30

* The percentage value of fluorides are equal to the addition of 25% of the molar amount of pure fluoride calculated on elemental sulfur (Sa) used to prepare the rubber mix. Differences in the amount of fluorides are due to different molar masses.

Mixing conditions	Laboratory micromixer (60 cm ³)
Temperature	60 °C
Temperature rise	$60 \ ^{\circ}\text{C} \rightarrow 90 \ ^{\circ}\text{C}$
Order	NBR, ST, ZnO, Fluoride , CBS, S ₈
Time	10 min
Rotor speed	20 rpm (incorporation) 40 rpm (homogenization)
Final step: Rolling into	sheets (two-roll open mixing mill)
Vulcanization condition	us 120 °C (Low) 160 °C (High) – Reference

Terta-n-butylammonium fluoride (TBAF) F1: Solution of 1.0M in THF (yellowish liquid) F2: Solid, trihydrate (·3H₂O) (colorless solid)

Caesium fluoride F3: Solid, anhydrous (white powder) Cs⁺ F⁻

1	0 —												_
	_ -	NI	BR_0%	F (RE	EF) (12	20)							
	9 – –		BR_255	% F1									
	ຂ		BR_25	% FZ % F3									
-	° _		BR 0%	5 F (RF	=F) (16	50)							
<u>L</u>	7 –		511_070	. (_,,(,,	,0)							
Ę				_					_				-
<u>ت</u> ۵	° –						_		-			_	T
n	5 –												
00						×							
Ĕ	4 –	Γ			7								
	3 –						,	/					
	Ŭ			/									
	2 –	+	/				╱						
	1		×							_			1
	' 🗲									-			T
	0 🕂 –	· · ·			·	·		· -					_
	0	5	10	15	20	25	30	35	40	45	50	55	60
						.							
Vulo						In	ne [n	ninj					
tomn PC1				160 °	С				120	°C			
temp. [C]													
% Fluoride				_					25%	%			
Fluoride	[-			F1	1	F2		F	3	
t ₉₀ [min]				10		;	36.5		37.5	5	4	7	
00													
M _{MAX} [dNm]				6.19		(6.48		6.38	3	6	.87	
1.1.1.1													
$v_c \cdot 10^{-4} (t_{90})$				1.78			1.78		1.65	5	1.	.83	
F 1/ 27													

Results – Section 1: Optimization of the additives and curing parameters

The influence of the **fluoride salt amount** on curing parameters of **NBR rubber**

Rubber formulations	F2 (12.5%)	<mark>F2</mark> (25%)	<mark>F2</mark> (50%)	<mark>F2</mark> (75%)	<mark>F2</mark> (100%)
Compound	-		[phr]		
Acrylonitrile-butadiene rubber (NBR)			100		
Zinc oxide (ZnO)			3		
Stearic acid (ST)			1		
N-cyclohexyl-2-benzothiazole sulfenamide (CBS)			1		
Elemental sulfur (S ₈)			2		
	0.31	-	-	-	-
	-	0.61	-	-	-
F2: TBAF · 3H ₂ O (solid)	-	-	1.23	-	-
	-	-	-	1.84	
	-	_	_	-	2.46

 * The percentage value of fluorides are given as molar amount of pure fluoride calculated on elemental sulfur (S₈) used to prepare the rubber mix.

Mixing conditions	Laboratory micromixer (60 cm ³)
Temperature	60 °C
Temperature rise	$60 \text{ °C} \rightarrow 90 \text{ °C}$
Order	NBR, ST, ZnO, Fluoride , CBS, S ₈
Time	10 min
Potor speed	20 rpm (incorporation)
Roloi speed	40 rpm (homogenization)
Final step: Rolling into	sheets (two-roll open mixing mill)
Vulcanization condition	120 °C (Low)
	160 °C (High) – Reference

	-	T				
Vulc. temp. [°C]	160 °C			120 °	C	
Fluoride	-		F2: TE	BAF · 3	BH₂O (s	olid)
%Fluoride	-	12.5%	25%	50%	75%	100%
t ₉₀ [min]	10	41	37.5	36	31	26
M _{MAX} [dNm]	6.19	6.31	6.38	6.20	6.15	5.32
𝒫 _c · 10 ^{−4} (t ₉₀) [mol/cm³]	1.78	1.60	1.65	1.60	1.71	1.09

F2: TBAF, solid, trihydrate (·3H₂O)

Results – Section 1: Optimization of the additives and curing parameters.

The fluoride anion supported sulfur vulcanization of NBR rubber followed by DSC and E_a

• 140 °C, 150 °C, 160 °C for reference sample - without fluoride

Results – Section 1: Optimization of the additives and curing parameters

The efficiency of the fluoride anion supported sulfur vulcanization on the other **diene rubbers**

Results – Section 1: Optimization of the additives and curing parameters

ECIU university

> **Primary effect**: Vulcanization enabled at **120 °C** (regardless of the *fluoride type*, its *physical form*, *amount* and *rubber type*)

> > Impact of fluoride salt type and its physical form:

Organic fluorides (TBAF) are more effective than inorganic (CsF)

Impact of fluoride salt amount: Higher amount improve curing parameters to a certain level (NBR: 75% mol./S₈, NR, SBR, EPDM: 25% mol./S₈)

> The efficiency of the curing system on different diene rubber type: Strongly depends on the rubber type (solubility, polarity) (Efficiency trend: : $NBR \rightarrow NR \rightarrow SBR \rightarrow EPDM$)

Results – Section 2: Performance of the low-temperature cured vulcanizates

The efficiency of the fluoride anion supported sulfur vulcanization on **filled NBR rubber**

Rubber formulations	SiO ₂	s-SiO ₂	СВ
Compound		[phr]	
Acrylonitrile-butadiene rubber (NBR)		100	
Zinc oxide (ZnO)		3	
Stearic acid (ST)		1	
N-cyclohexyl-2-benzothiazole sulfenamide (CBS)		1	
Elemental sulfur (S_8)		2	
F2 : TBAF \cdot 3H ₂ O (solid)		1.84 (NBR)	
Silica (SiO ₂)	10	-	-
Silanized silica (s-SiO ₂)	-	10	
Carbon black (CB)	_		10

* The percentage value of fluorides are equal to the addition of 25% (NR, SBR, EPDM) or 75% (NBR) of the molar amount of pure fluoride calculated on elemental sulfur (S₈) used to prepare the rubber mix.

Mixing conditions	Laboratory micromixer (60 cm ³)
Temperature	60 °C
Temperature rise	$60 \text{ °C} \rightarrow 90 \text{ °C}$
Order	NBR, ST, ZnO, Filler, Fluoride,
Order	CBS, S ₈
Time	10 min
Poter apod	20 rpm (incorporation)
Rolor speed	40 rpm (homogenization)
Final step: Rolling into s	heets (two-roll open mixing mill)
Vulcanization conditions	120 °C (Low)
	2 160 °C (High) – Reference

Fillers
Silica (SiO ₂)
Tradmark: Aerosil® 380
Manufacturer: Evonik GmbH
Silanized silica (s-SiO ₂)
After treatment with dimethyldichlorosilane
Tradmark: Aerosil [®] R972
Manufacturer: Evonik GmbH
Carbon black (CB)
Tradmark: Humex N-339 HAF
Manufacturer: Hules Mexicanos S.A. de C.V/

Results – Section 2: Performance of the low-temperature cured vulcanizates

Results – Section 2: Performance of the low-temperature cured vulcanizates

Mechanical parameters under static conditions - filled **NBR** compounds; **comparison of fillers**

Results – Section 2: Performance of the low-temperature cured vulcanizates

Mechanical parameters - filled **NBR** compounds; **comparison of fillers**

 Ξ

tanD

Temperature [°C]

Noteworthy:

Glass transition temperatures slightly shifted into lower values for low temperaturd cured vulcanizates filled with s-SiO₂ and CB.

Section 2 summary: Performance of the low-temperature cured vulcanizates

Primary effect: Vulcanization enabled at **120 °C** (*fillers* generally do not interfere with the vulcanization process)

Impact of the filler type:

In nitrile rubber (NBR) the effectiveness of the low-temperature curing system was highest for **SiO**₂, then **CB** and **s-SiO**₂ filled compounds.

Static mechanical parameters of low-temperature cured rubbers:

Static mechanical properties can be at the **same level** as for vulcanizates cured at **conventional** temperature (160°C).

No negative effect on the **rubber-filler interactions** as well as **dynamic parameters** when samples cured at **120**°C.

SO

Summary: Low-temperature sulfur vulcanization

Low-temperature vulcanization system has been developed (protected by a patent application number P.442358 - (submitted: September 2022) **Potential aaplication in low-temp. rubber technologies** such as tire retreading or outdoor repairing of conveyor belts

Suitable for various diene rubbers and can be used with different filler systems and various organic accelerators (*versatile*)

Comparable properties of low-temperature cured rubbers

Energy efficiency in the industrial scale may be achieved due to significantly lower vulcanization temperature

LODZ UNIVERSITY OF TECHNOLOGY EDUCATION, RESEARCH, INNOVATION